Growth in Chevalley groups and some applications
I.D. Shkredov (Steklov Mathematical Institute, Russia)
Abstract: Given a Chevalley group ${\mathbf G}(q)$ and a parabolic subgroup $P\subset {\mathbf G}(q)$, we prove that for any set $A$ there is a certain growth of $A$ relatively to $P$, namely, either $AP$ or $PA$ is much larger than $A$. Also, we study a question about intersection of $A^n$ with parabolic subgroups $P$ for large $n$. We apply our method to obtain some results on a modular form of Zaremba's conjecture from the theory of continued fractions and make the first step towards Hensley's conjecture about some Cantor sets with Hausdorff dimension greater than $1/2$
number theory
Audience: researchers in the topic
Combinatorial and additive number theory (CANT 2021)
Series comments: This is the nineteenth in a series of annual workshops sponsored by the New York Number Theory Seminar on problems in combinatorial and additive number theory and related parts of mathematics.
Registration for the conference is free. Register at cant2021.eventbrite.com.
The conference website is www.theoryofnumbers.com/cant/ Lectures will be broadcast on Zoom. The Zoom login will be emailed daily to everyone who has registered on eventbrite. To join the meeting, you may need to download the free software from www.zoom.us.
The conference program, list of speakers, and abstracts are posted on the external website.
| Organizer: | Mel Nathanson* |
| *contact for this listing |
